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Unexpected Diversity during Community Succession in the Apple
Flower Microbiome

Ashley Shade,a Patricia S. McManus,b Jo Handelsmana

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USAa; Department of Plant Pathology, University of Wisconsin—
Madison, Madison, Wisconsin, USAb

ABSTRACT Despite its importance to the host, the flower microbiome is poorly understood. We report a culture-independent,
community-level assessment of apple flower microbial diversity and dynamics. We collected flowers from six apple trees at five
time points, starting before flowers opened and ending at petal fall. We applied streptomycin to half of the trees when flowers
opened. Assessment of microbial diversity using tag pyrosequencing of 16S rRNA genes revealed that the apple flower communi-
ties were rich and diverse and dominated by members of TM7 and Deinococcus-Thermus, phyla about which relatively little is
known. From thousands of taxa, we identified six successional groups with coherent dynamics whose abundances peaked at dif-
ferent times before and after bud opening. We designated the groups Pioneer, Early, Mid, Late, Climax, and Generalist commu-
nities. The successional pattern was attributed to a set of prevalent taxa that were persistent and gradually changing in abun-
dance. These taxa had significant associations with other community members, as demonstrated with a cooccurrence network
based on local similarity analysis. We also detected a set of less-abundant, transient taxa that contributed to general tree-to-tree
variability but not to the successional pattern. Communities on trees sprayed with streptomycin had slightly lower phylogenetic
diversity than those on unsprayed trees but did not differ in structure or succession. Our results suggest that changes in apple
flower microbial community structure are predictable over the life of the flower, providing a basis for ecological understanding
and disease management.

IMPORTANCE Flowering plants (angiosperms) represent a diverse group of an estimated 400,000 species, and their successful cul-
tivation is essential to agriculture. Yet fundamental knowledge of flower-associated microbiota remains largely unknown. Even
less well understood are the changes that flower microbial communities experience through time. Flowers are particularly con-
ducive to comprehensive temporal studies because they are, by nature, ephemeral organs. Here, we present the first culture-
independent time series of bacterial and archaeal communities associated with the flowers of apple, an economically important
crop. We found unexpected diversity on apple flowers, including a preponderance of taxa affiliated with Deinococcus-Thermus
and TM7, phyla that are understudied but thought to be tolerant of an array of environmental stresses. Our results also suggest
that changes in microbial community structure on the apple flower may be predictable over the life of the flower, providing the
basis for ecological understanding and disease management.
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Despite the immense importance of flowers in agriculture and
the biosphere, little is known about their microbial ecology

(1). The flower microbiome, which encompasses microorganisms
associated with flowers, is a rich habitat for microbial life. In con-
trast to the intensively studied leaf surface (2–7), little is known
about the flower microbiome.

Flowers provide ephemeral but nutrient-rich and protective
habitats for microorganisms. In temperate climates, warm spring
temperatures induce buds to open. Blooming exposes the male
(stamen, including the anther and filament) (Fig. 1) and female
(pistil, including the stigmata, style, and ovary) reproductive parts
and inside surfaces of petals to the environment and microorgan-
isms. Flower stigmas, in particular, exude sugars and amino acids
that support a relatively large microbial load compared to that of

other flower parts (8, 9). Previous studies have explored the
culture-independent diversity of yeasts and fungi on flowers or in
nectar (e.g., see references 10 –12), culture-based diversity of bac-
teria on flowers (e.g., see references 9 and 12), and, quite recently,
culture-independent diversity of bacteria in nectar (13), but none
have considered the community diversity of flower-associated
bacteria and archaea through time using culture-independent ap-
proaches.

The apple flower microbiome is perhaps the best-studied floral
community because it is the site of infection by Erwinia amylovora,
which is the cause of a costly disease, fire blight (e.g., see references
14 and 15). Apple flower longevity from bloom to senescence is at
most two weeks, occurring in the early spring in temperate cli-
mates, and much research has been devoted to understanding the
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relationship between the fire blight pathogen and possible antag-
onistic species and flower biology (16). As one example, apple
flower age is important for the growth rate of E. amylovora on the
flower (17, 18). Fire blight prevention strategies include applica-
tion of antibiotics, such as streptomycin, and bacterial antagonists
that compete with E. amylovora on floral stigmata and nectaries.

E. amylovora resistance to antibiotics (19)
and mixed effectiveness of antagonists
(20–22) make fire blight a persistent
problem. A thorough understanding of
the flower microbiome may reveal new
antagonists as well as insights about the
identities, dynamics, and interplay of
commensal microorganisms with the
plant host, pathogens, and pollinators.
Just as culture-independent approaches,
particularly those based on deep sequenc-
ing, are reshaping our understanding of
the fundamental biology of complex mi-
crobial systems, such as those in soil and
the human body (23, 24), the understand-
ing of plant reproduction and flower
function may be advanced by similar
study of the flower microbiome.

In this study, we present a culture-
independent analysis of diversity and
structure of microbial communities asso-
ciated with apple flowers through time
and specifically address the two following
fundamental questions. (i) How do mi-
crobial communities change as flowers
age? (ii) Does streptomycin application
alter the composition or dynamics of the
microbial community on the flower?

RESULTS
Tag pyrosequencing revealed diverse
microbial consortia on apple flowers.
We assessed changes in apple flower bac-
terial and archaeal communities through
time and after streptomycin application
(Fig. 1) using tag pyrosequencing of 16S
rRNA genes. After processing and quality
control, we detected 1,677 operational
taxonomic units (OTUs; 97% sequence
identity) from 50,865 tag sequences. The
most abundant OTUs were most closely
affiliated with the phyla Deinococcus-
Thermus, TM7, Bacteroidetes, Firmicutes,
and Proteobacteria. The community had a
few very abundant OTUs, identified as
members of Deinococcus-Thermus and
TM7 (Fig. 2), and the remaining OTUs
were relatively rare. Unidentified bacteria
comprised 26% of the data set (431
OTUs), suggesting that many flower
community members are uncharacter-
ized.

We first asked whether communities
from different trees had different struc-

tures. Community structures can be distinguished by centroid
(mean structure) or by spread (variability in structure) (see
Fig. S1A posted at http://www.yale.edu/handelsmanlab/resources
/index.html) (25–27). Across individual trees (inclusive of all
time points), we did not detect differences in centroid (global
PERMANOVA P value of 0.03, but all post hoc pairwise test P

FIG 1 Study design and flower anatomy. (A) Time course for sampling the apple microbiome. Fifteen
pooled flowers from each of six Gala apple trees were collected at five time points over the life span of the
flowers, for a total of 30 samples. Collection of phenologically matched flowers began before they
opened and ended when petals fell. Arrows indicate streptomycin application. A precipitation event
(1.30 cm) occurred on 30 April 2010. (B) Anatomy of a flower. All flower parts, including sepals, pistil,
petals, and stamens, were included in the sampling. The current study provides a picture of the micro-
bial communities that includes all of these flower compartments. (Reprinted from reference 81 with
permission of the publisher.)

Shade et al.
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values were �0.05 after Bonferroni’s correction) or spread (global
PERMDISP P � 0.34). This indicated that the trees had compara-
ble centroids and spread and could serve as independent biologi-
cal replicates.

Apple flower microbial communities exhibited temporal
patterns. Analysis of temporal patterns showed that phylogenetic
diversity increased between 27 and 29 April and then stabilized

(Fig. 3a). Additionally, variability in community structure was
high before flowers opened, decreased when flowers opened, and
then increased to prebloom levels through the rest of the life of the
flower (Fig. 3b), suggesting that open flowers may have a more
narrowly defined community than closed flowers. Though there
were differences between some time points, there were no general
temporal trends in evenness or richness (see the results in Text S1
in the supplemental material). We also detected differences in
community structure across time points, but there was no effect of
streptomycin treatment or of a time-treatment interaction (Ta-
ble S1). Together, these results and others (Fig. S2) suggest that
changes in apple flower microbial communities are patterned over
time.

Next, we asked whether the temporal community patterns
could be explained by environmental variables. Time, mean tem-
perature, high temperature, and high wind speed were correlated
with community patterns (all P values were �0.05) (see Table S2
in the supplemental material), although time and temperature
were also correlated to each other (Pearson’s r � 0.51, P � 0.003).
Precipitation had no explanatory value (P � 0.56), and neither did
flower biomass (P � 0.31). This suggests that some environmental
variables, such as wind and temperature, but not flower biomass,
contributed to the community-level variability (see the supple-
mental results in Text S1). Flower age and certain environmental
conditions appeared to be important determinants of microbial
community structure, but these factors cannot always be sepa-
rated because the environment induces changes in host biology.

Apple flower microbial communities exhibited succession.
Modest phylum-level changes in the community (see Fig. S1 in the

supplemental material) suggested that the
observed temporal patterns (Fig. 3) may
be more apparent at the family, genus, or
OTU level than at the phylum level. We
hypothesized that there were groups of
OTUs that had similar occurrence pat-
terns, but we realized that these patterns
may encompass a variety of distinct taxon
dynamics (Fig. S2A posted at http://www
.yale.edu/handelsmanlab/resources/index
.html). To uncover possible trajectories,
we performed a hierarchical cluster anal-
ysis to identify cooccurring taxa (supple-
mental methods in Text S1 and Fig. S3A
posted at http://www.yale.edu/handels
manlab/resources/index.html). We found
that coherent occurrence patterns of
OTUs on apple flowers were well de-
scribed by the six most aggregated clusters
(Fig. 4a). Furthermore, the peak abun-
dances of the OTUs within these clusters
occurred at different sampling times
(Fig. 4b), and this temporal pattern was
repeatable across trees, as indicated by the
small error bars around the mean of six
trees (Fig. 4b). We examined dynamics of
each of the five most prevalent OTUs
within each cluster and observed incre-
mental increases and decreases of their
abundances through time (Fig. 5). These
patterns reflect the dynamics that define

FIG 2 Distribution of taxon abundances among OTUs (singletons omitted)
detected on apple flowers.

FIG 3 Temporal trends in the apple flower microbiome. For each time point, n � 6 (1 sample of DNA
extracted in bulk from 15 flowers from each of six trees). The inner-quartile ranges are shown by the box
boundaries, nonoutlier extremes are shown by the whiskers, the median is shown by the thick middle
line, and outliers are shown by the outliers’ black points. Statistics were summarized across each of six
trees sampled at each time point, and the communities were analyzed at the 97% OTU level. Trees 4, 5,
and 6 were sprayed with streptomycin on 29 and 30 April 2010. (a) Rarefied Faith’s phylogenetic
diversity of microorganisms. There were 10 resamples at a depth of 1,531 sequences for each tree at each
time point. Letters indicate significant differences in phylogenetic diversity across days, assessed by
analysis of variance (F � 101.56, 4 degrees of freedom [df], P � 0.001) and post hoc testing with Tukey’s
HSD test (P � 0.05). (b) Variability in community structure (assessed by analysis of beta dispersion, a
metric of variability). Though modest differences were detected (multivariate homogeneity of group
dispersions; F � 2.34, 4 df, P � 0.08), a post hoc test revealed that only 27 and 29 April were different
(Tukey’s HSD test; P � 0.09).
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succession (Fig. S2A, panel f). Therefore, from these clusters we
designated “successional groups” of OTUs that had coherent dy-
namics and distinct maxima at particular sampling times.

Each successional group corresponded to a different time
point and thus also to a different flower age (Fig. 4b and 5). There
was a group with members that peaked before flowers opened
(“Pioneer”), followed by a group with members that peaked on
the day that flowers opened (“Early”). “Mid” group members
peaked when flowers had been open for 2 days, and “Late” group
members peaked when flowers had been open for 3 days and in-
cluded a high abundance of Lactobacillus and Acetobacter taxa,
whose occurrences aligned with previously reported conditions of
flower decomposition by yeast (28–30). “Climax” group members
were most abundant at petal fall. The anomalous group, “Gener-
alists,” contained members with mildly fluctuating dynamics and
generally persistent occurrences through time. In summary, dis-
tilled from 1,677 taxonomic units, six successional groups de-
scribed the temporal dynamics of microbial communities on ap-
ple flowers.

OTUs of unidentified bacteria were
prevalent in all groups, and TM7 and
Deinococcus-Thermus OTUs were preva-
lent in five of the six groups (Table 1). We
explored the phylogenetic distribution of
successional group members and found
that no one phylogenetic lineage was par-
ticularly abundant in any group (Fig. 6)
except that some taxa affiliated with TM7
were more common in Early succession
than at other stages.

Because community structure varied
over time (Fig. 3b) and 90% of the OTUs
were represented by fewer than 50 se-
quences (Fig. 2), we hypothesized that the
less-abundant OTUs were also transient,
or detected at relatively few points in the
series. Transient organisms may be those
that arrive on flowers but do not success-
fully colonize. We found a relationship
between persistence (the consistency in
detecting a taxon through time) and prev-
alence (the abundance of a taxon) such
that transient OTUs also tended to have
low abundance (Fig. 7a and c). This
suggests that at each time point, rare,
transient OTUs were replaced in the
community by other transient OTUs,
indicating high community turnover.
Prevalent OTUs were more often persis-
tent (Fig. 7a and c) and increased and de-
creased in abundance gradually (Fig. 5).
Therefore, the persistent and prevalent
OTUs changed over time, contributing
to successional patterns (Fig. 5). Many
prevalent OTUs were affiliated with
Deinococcus-Thermus, TM7, and Bacte-
riodetes, and many rare OTUs were affili-
ated with Proteobacteria and Actinobacte-
ria (Fig. 6).

Nestedness describes changes among
the constant members of a community, and it occurs when the
membership of a community is a subset of a richer community
(31, 32). Replacement describes the addition of new members that
were not previously detected to a community (31, 32). To under-
stand the contributions of both replacement and nestedness to
temporal changes in community structure, we partitioned beta
diversity into these components (31, 32) and then additionally
quantified nestedness (33). However, because we knew that tran-
sient community members were often rare (Fig. 7a and c), we also
quantified how rare taxa influenced the contributions of nested-
ness and replacement to beta diversity (using MultiCoLA) (see the
supplemental methods in Text S1) (34). Omitting rare taxa did
not affect beta diversity, as each reduced data set remained
strongly correlated with the full data set despite removal of up to
90% of the least-abundant OTUs (Table S3). This analysis con-
firmed that rare OTUs contributed little to the overarching com-
munity patterns.

Sørenson’s similarity (Sør) was used as an overall metric of beta
diversity, and was partitioned into the additive components of

FIG 4 Discovery, dynamics, and characteristics of apple flower successional groups. (a) Hierarchical
clustering (complete linkage-based Bray-Curtis similarities among OTUs defined at 97% sequence
identity) to determine OTUs having coherent dynamics. The analysis was conducted on 1,677 OTUs,
each represented as a branch tip of the dendrogram. The y axis height represents within-cluster Bray-
Curtis similarity. (b) Successional group dynamics indicating the mean relative abundance of members
belonging to each group over the lifetime of apple flowers. Error bars indicate the standard deviation
around the mean of 6 trees.

Shade et al.
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Simpson’s similarity (Sim), and nestedness (Nes). The Sim com-
ponent is attributed to replacement of community members
(sometimes referred to as turnover), and the Nes component is
attributed to one community having a subset membership of a
richer community. We calculated multivariate Sør, Sim, and Nes
for each tree through time. Both nestedness and replacement con-
tributed to temporal changes in community composition
(Fig. 7b). Replacement made a higher contribution to beta diver-
sity than did nestedness, likely because of the large proportion of
rare and transient OTUs. As more rare OTUs were omitted from
the data set, the relative contribution of nestedness increased
while the contribution of replacement decreased (Fig. 7d). These
analyses of replacement and nestedness, which consider only pres-
ence and absence of taxa, are complementary to the previous anal-
yses that also considered changes in relative abundance of taxa.

Cooccurrence network reveals potential interactions among
flower taxa through time. After identifying a set of persistent and
prevalent OTUs that exhibited clear temporal patterns on the ap-
ple flower, we asked whether these taxa were potentially interact-
ing with each other, which would suggest that microbial interac-
tions on the apple flower were, in part, responsible for the
observed temporal patterns. Thus, we investigated prevalent
OTUs for associations through time using local similarity analysis
(LSA) (35, 36), a hypothesis-generating tool used to identify pairs
of OTUs that exhibited statistically significant cooccurrences.
From the subset of significant associations, we built a network for
each tree through time (see Table S4 in the supplemental material)
and also in aggregate through time by using each tree as an inde-

pendent replicate time series in the analysis (referred to as the “full
network”) (Table S4; Fig. 8).

There were 175 OTUs (out of 336 OTUs among the most prev-
alent 20%) that had associations, defined by significant local sim-
ilarity scores, representing a total of 1,532 associations. The visu-
alization of the full network clearly shows that all successional
groups were connected (Fig. 8). The Pioneer and Climax groups
had the fewest associations between them, a finding which is ex-
plained by the time between their peak abundances. The Early-
affiliated OTUs had the most associations, followed by the Late,
Generalist, Climax, Mid, and Pioneer groups.

Though all of the OTUs included in the LSA were among the
most prevalent on the flowers, there was no relationship between
the abundance of an OTU and its number of associations (see
Fig. S3 in the supplemental material). Furthermore, there were no
significant associations detected for the most abundant OTU
(Deinococcus-Thermus OTU 6932) (Fig. 5c, filled symbols).
Though there were some “hubs” of OTUs that had many associa-
tions (Fig. 8), the removal of any one OTU from the network did
not substantially change network properties (Fig. S4). This result
suggests that the apple flower microbial community is generally
robust, as there were taxa that maintained the overall network
connections when other taxa were removed. The network analysis
uncovered a small subset of OTUs (175 out of 1,677 observed in
the full data set) that are likely important for microbial commu-
nity interactions and dynamics on these apple flowers. Further
discussion of other aspects of the flower networks, including as-

FIG 5 Dynamics of the five most prevalent OTUs detected for each successional group. OTU IDs correspond to the taxonomic assignments in Table 1. Error
bars are standard errors around the mean OTU’s relative abundance at one time point across six trees. (a) Pioneer taxa; (b) Early succession taxa; (c) Mid
succession taxa (secondary axis is for OTU 6932); (d) Late succession taxa; (e) Climax taxa; (f) Generalist taxa.
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sociation direction and time delay, clustering, and “small world”
nature, is provided in the supplemental results in Text S1.

Streptomycin modestly reduced phylogenetic diversity of
microorganisms on flowers. Communities on streptomycin-
sprayed or unsprayed flowers did not differ in their centroid, vari-
ability, evenness, or number of OTUs (all P values were �0.10).
However, microbial communities of streptomycin-sprayed flow-
ers had lower phylogenetic diversity than flowers that were not
sprayed (not sprayed, mean � 12.8, standard deviation � 2.41;
sprayed, mean � 11.9, standard deviation �3.23; t test P � 0.005).
Overall, these results suggest minimal community-level responses
to streptomycin.

DISCUSSION

In this work, we characterized the apple flower microbiome using
culture-independent methods. We detected abundant members
of TM7 and Deinococcus-Thermus, phyla not previously known to
be associated with flowers. We also found a succession of micro-
organisms on the flowers, and this successional pattern was repro-
ducible across six trees. There were microbial taxa whose abun-
dances followed the same temporal patterns over the life of the
flower, indicating successional groups. There was a consistent as-
semblage of taxa present from flower opening through petal fall,
and differential dynamics of prevalent microbes likely under-
pinned the successional pattern. There was also an anomalous
group of persistent taxa, designated “Generalists,” that were not
the most abundant but nonetheless comprised a substantial por-
tion of the community. Together, these Generalists and prevalent
members of successional groups provide the first clues as to the
existence of a core microbiome for apple flowers, defined by prev-
alence, persistence, and associations (37). Whether or not the
communities described here are indeed a core microbiome com-
mon to apple flowers will be determined by further studies in
additional orchards over different years.

Unexpected diversity in the apple flower microbiome. In this
study, the apple flower microbiome contained diverse representa-
tion among bacteria, including many taxa affiliated with Proteo-
bacteria, Actinobacteria, and Bacteroidetes. The apple flower mi-
crobiome represented greater phylogenetic diversity than
observed previously on leaves (38–41), which are the best-studied
aspect of the above-ground plant microbiome. The most-
abundant taxa on apple flowers were affiliated with the under-
studied phyla Deinococcus-Thermus and TM7. Notably, these
phyla were not detected in 16S rRNA gene clone libraries of leaf
surfaces in the same orchard (42); however, leaf sampling was
done later in the season and in a different year than the sampling
for the present study. Both Deinococcus-Thermus and TM7 taxa
were detected in 16S rRNA gene libraries derived from the micro-
bial community associated with Populus deltoides (cottonwood)
leaves (38), although they were not as prevalent as those detected
on apple flowers described here. Members of Deinococcus-
Thermus and TM7 are known for their ability to withstand envi-
ronmental stresses (43, 44). Future investigation of flower micro-
bial communities will likely provide examples of Deinococcus-
Thermus and TM7 genomes, proteomes, and metabolomes, which
will contribute to the design of appropriate culture conditions for
as-yet-uncultivated members of both phyla. A single-cell ap-
proach to investigating the microbial diversity on flowers may be
especially fruitful for discovering novel organisms and their genes.

TM7 was the only phylum that exhibited modest clustering by

TABLE 1 Ten most abundant OTUs within each successional group,
ranked by their abundances and identified by the closest match to
reference sequences in the Ribosomal Database Project

Successional group and OTU ID Family, genusa

Pioneer
2415 Unidentified TM7*
7413 Unidentified TM7*
2210 Enterobacteriaceae, Pantoea
5546 Unidentified TM7*
7433 Deinococcaceae, Deinococcus
4040 Enterobacteriaceae, Escherichia/Shigella
1844 Unidentified Bacteria*
7142 Unidentified Bacteria*
7797 Enterobacteriaceae, Buttiauxella
2242 Cytophagaceae, Hymenobacter

Early
5552 Unidentified TM7*
6696 Unidentified Bacteria*
2168 Unidentified TM7*
7816 Unidentified TM7*
2035 Unidentified TM7*
4187 Unidentified TM7*
4923 Flavobacteriaceae
888 Methanosarcinaceae, Methanosarcina
2215 Unidentified Bacteria*
5728 Unidentified Bacteria*

Mid
6932 Trueperaceae, Truepera
7041 Trueperaceae, Truepera
4964 Unidentified Bacteria*
4462 Deinococcaceae, Deinococcus
1372 Unidentified Chloroflexi*
2690 Deinococcaceae, Deinococcus
5664 Unidentified Chloroflexi*
2678 Unidentified Bacteria*
210 Trueperaceae, Truepera
4754 Trueperaceae, Truepera

Late
6950 Lactobacillaceae, Lactobacillus
2879 Acetobacteraceae, Acetobacter
5655 Unidentified Bacteria*
7310 Deinococcaceae, Deinococcus
3969 Unidentified TM7*
6504 Unidentified Bacteria*
2311 Trueperaceae, Truepera
6218 Unidentified TM7*
3993 Acetobacteraceae, Acetobacter
6961 Unidentified TM7*

Climax
1241 Unidentified Chloroflexi*
4478 Enterobacteriaceae
5188 Chitinophagaceae, Terrimonas
6802 Unidentified TM7*
2132 Unidentified TM7*
556 Burkholderiaceae, Burkholderia
4012 Unidentified Bacteria*
3270 Micrococcaceae, Arthrobacter
7247 Deinococcaceae, Deinococcus
2147 Enterobacteriaceae

Generalist
2082 Deinococcaceae, Deinococcus
15 Cytophagaceae, Hymenobacter
4290 Unidentified TM7*
11 Trueperaceae, Truepera
343 Unidentified TM7*
4767 Xanthomonadaceae
5346 Unidentified Bacteria*
6360 Deinococcaceae, Deinococcus
333 Unidentified Bacteria*
6539 Intrasporangiaceae, Knoellia

a Asterisks indicate that the OTU could not be identified to at least the family level.

Shade et al.
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successional group, appearing abundantly in the Early succes-
sional group. We speculate that TM7 taxa are contenders for col-
onization of closed flowers, where they survive but do not grow
until flowers open and then grow rapidly and competitively on
open flowers. Interestingly, members of the TM7 phylum are
thought to carry a ribosomal mutation conferring resistance to
streptomycin (43), which may explain their increased abundance
following streptomycin application.

An OTU affiliated with Methanosarcina, an archaeal methano-
gen, was the most prevalent member of the Early successional
group. Methanosarcina are anaerobes and likely persist in mi-
croaerophilic environments, such as biofilms on or in the flower
that are protected from oxygen, possibly within a surface biofilm
(e.g., see references 45 and 46). Members of the Methanosarcina-
affiliated OTU may be subsisting on methanol, a by-product of
flowering plant cell wall synthesis (47) that is important for
growth of an abundant leaf microorganism, Methylobacterium
(48). Methanol is released in higher concentrations from young
leaves than from old leaves (49), a trend which aligns with the high
abundance of the Methanosarcina OTU at early flowering when
petals were expanding. Though the primers that were used in this
study target both Archaea and Bacteria, it is unlikely that they
target every archaeal taxon. Thus, it is possible that other archaeal
taxa were present but undetected. Given the unexpected diversity
of bacterial taxa on flowers, an interesting next step may be to
investigate the diversity of the archaeal flower microbiome with
primers designed to maximize representation of archaeal lineages.

A recent study of microorganisms in
nectar found sizeable representation of
gammaproteobacteria, including Acin-
etobacter and Pseudomonas (13). Al-
though we detected both of these genera
on apple flowers, they were not among the
most abundant. This hints that the
Deinococcus-Thermus and TM7 taxa in-
habit a flower compartment other than
the nectar. In agreement with past work
(13), we found a preponderance of un-
identified bacteria on apple flowers, dem-
onstrating that flowers harbor novel mi-
crobial taxa and should be targeted for
future studies of diversity and bio-
prospecting. Unidentified bacteria were
among the prevalent members of each
successional group.

Unraveling the succession: pattern,
redundancy, and noise. We applied a set
of analyses that permitted detection of a
successional pattern of apple flower mi-
crobiota, explored the consequences of
community structure underlying that
pattern, quantified the contribution of
taxa to both pattern and noise, and de-
scribed the possible environmental con-
ditions and microbial interactions that
likely drive the pattern. The statistical tool-
box used here may be generally useful for
understanding temporal patterns in micro-
bial communities from other habitats.

Each apple tree carried representative
taxa from each successional group, and the dynamics of these
groups were reproduced on all trees. Thus, in aggregate, the mem-
bers of the successional groups provided the relevant ecological
units for observing succession. The reproducible dynamics of dif-
ferent but analogous flower communities suggest some level of
ecological, if not functional, redundancy among taxa (50). The
robust network, in which removal of any one OTU did not
“break” the overall properties, further suggests redundancy in as-
sociations among OTUs.

Variability in community structure was lower on open flowers
than on closed ones, but phylogenetic diversity was higher on
open flowers. This interesting dynamic might be explained in the
context of the successional patterns. Before opening, a flower
likely has a lower microbial load because it has been exposed to the
environment for less time and possibly also because it provides
fewer resources for early colonizers. This may result in a closed-
flower community comprised of a few random taxa that immi-
grate to the flower surface but do not necessarily grow, leading to
high variability in the community structure of closed flowers. Af-
ter flowers open, a few successful r-strategists may take advantage
of the “clean slate” provided by the fresh stigma. Thus, the most
competitive members would outgrow less-fit competitors, poten-
tially increasing similarity between communities and decreasing
multivariate dispersion. The increase in phylogenetic diversity af-
ter flowers open is explained by the dynamics of two divergent
phyla: TM7-affiliated taxa were most prevalent in Early succes-
sion, and Deinococcus-Thermus-affiliated taxa were very abundant

FIG 6 Distribution and representation of apple flower microorganisms. The tree includes OTUs
identified at least to the class level. The branch shading corresponds to the different phyla detected
(phylum names indicated in boxes). The branch tip colors correspond to the successional groups of
each taxon (OTUs with 97% tag sequence identity). The height and label of the colored bar indicate the
relative abundance of each OTU in the data set, and unlabeled OTUs have relative abundances below
0.01. Note that Fig. 6 is a tool for visualizing the representation of OTUs among phyla and is not
intended to depict evolutionary relationships.

March/April 2013 Volume 4 Issue 2 e00602-12 ® mbio.asm.org 7

 
m

bio.asm
.org

 on M
arch 4, 2013 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


in Mid succession, leading to increased phylogenetic diversity be-
cause of the prevalence of these divergent phylotypes.

We detected a cohort of rare, transient taxa. Transient taxa are
those that are dispersed to a habitat but do not persist on the scale
of the experiment. These taxa may have been generally less com-
petitive within the flower habitat. For instance, some apple and
pear flower bacteria are sensitive to the sugar concentration and
composition in nectar and grow only given their optimal ranges
(51–53). Transient taxa likely contributed to baseline variability
and did not play substantial roles in determining the successional
patterns. Indeed, removing rare community members (thereby
removing noise) had no impact on the overall community pat-

terns. By partitioning beta diversity into
components of nestedness and replace-
ment, we demonstrated that replacement
(the influx of new members to a commu-
nity, as defined by references 31 and 32)
was the largest contributor to community
variability. At the same time, many prev-
alent taxa were also persistent, and the
prevalent members within a successional
group dominated the communities at
each time point. Therefore, we attribute
the clear successional pattern to prevalent
and persistent taxa and the background
variability to rare and transient taxa.

Drivers of microbial succession in
the flower microbiome. As has been ob-
served in the phyllosphere (54, 55), the
structure and dynamics of the flower mi-
crobiome are likely to be driven by disper-
sal (emigration and immigration), envi-
ronmental conditions, host biology, and
interactions among microorganisms.
Dispersal includes immigration to and
emigration from the flower surface (7, 54,
56), processes driven by wind (e.g., see
reference 57), and rain splash (e.g., see
reference 58), with pollinators also play-
ing a role in facilitating immigration (e.g.,
see references 59 – 61). In the work pre-
sented here, wind was correlated with
community patterns through time and
was a likely agent of immigration to and
emigration from the flowers.

It is difficult to separate the effects of
flower development from sampling date,
as our experiment was designed to ensure
synchrony in development. Future stud-
ies will vary the age of the flower and the
day of sampling so that flowers in multi-
ple developmental stages are collected on
the same day. This would be a challenging
experiment, at least in years with a rela-
tively short bloom period, as the majority
of flowers on apple trees open in response
to temperature cues and therefore often
have synchronous developmental dy-
namics.

Temperature, a driver of microbial
growth (58, 62), was correlated with changes in microbial com-
munity structure. Growth of prevalent taxa was indicated by the
gradual increases and decreases in abundance and shared dynam-
ics within a successional group. Morphological changes in the
flower stigmata and nectaries (17, 63–65), which are often corre-
lated with changes in temperature (e.g., see reference 8), create
new niches for microbial colonization.

Associations identified using local similarity analysis can be
used to generate hypotheses that can be addressed in follow-up
studies. For example, Generalist taxa and “hub” taxa (those with a
relatively large number of associations with other taxa) may be
targeted for construction of model communities for laboratory

FIG 7 Characteristics of community structure that contribute to changes in beta diversity though
time. (a) Prevalent members of the community are detected often (persistent through time and prev-
alent across trees), while rare members are detected infrequently (transient). Each OTU is a point, the
blue line is the log-linear model (adjusted r2 � 0.68, slope � 6.49, P � 0.001), and gray shading
represents the standard error. Percent occurrence is out of 30 total observations (six trees and five
sampling times). (b) Partition of temporal beta diversity (measured as Sørenson’s similarity [Sor]; blue)
into components that represent taxa replacement (Simpson’s similarity [Sim]; green) and nestedness
(Nes; red). Each point is multivariate community similarity calculated for a time series from one tree,
and the analysis was repeated for each of six trees and at various levels of cutoff to remove less prevalent
OTUs. The line is an average across the trees; gray shading represents the standard error. (c) Prevalent
members of the community are detected often (persistent), while rare members are detected infre-
quently (transient). Each OTU is a point, the color shows the tree in which the OTU was detected, and
the lines are the log-linear models for each tree (all adjusted r2 values are �0.45, slopes range between
3.99 and 5.01, all P values are �0.001). Percent occurrence is out of five time points per tree. (d)
Nestedness metric based on overlap and decreasing fill (NODF). Each point is calculated for a time
series from one tree, and the analysis was repeated for each of six trees and at various levels of cutoff to
remove less-prevalent members. The line is an average across the trees; gray shading represents the
standard error.
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exploration of microbial interactions on the apple flower and with
the plant host.

Impact of streptomycin on the apple flower microbiome. It
was surprising that direct application of streptomycin to the flow-
ers did not appear to affect the flower microbiome. The target
pathogen, Erwinia amylovora, is sensitive to streptomycin, and its
populations are reduced by streptomycin application to apple
flowers (see reference 66 and references therein). But Erwinia-
affiliated taxa were rare in communities we characterized, and
responses of rare organisms are not always evident in community-
level analyses. Little is known about the streptomycin sensitivity of
the rest of the flower-associated community members, although
other studies have demonstrated that members of TM7, one of the
most abundant phyla we found on the flowers, are likely to be
resistant to streptomycin based on the sequence of their rRNA,
which is the binding site for the antibiotic (43). A previous study
reported culturing of high populations (103 to 105 CFU per leaf) of
streptomycin-resistant bacteria from Michigan apple trees (67),

and a culture-independent analysis of apple leaf surfaces was un-
able to distinguish communities of sprayed trees from communi-
ties of unsprayed trees (68). Collectively, these studies suggest that
streptomycin has minimal short-term impact on nontarget mi-
croorganisms in apple orchards.

It is possible that streptomycin exerted an effect that was not
detected by our methods. The most likely complication would be
DNA from dead cells in the samples (discussed at length in the
supplemental methods in Text S1 in the supplemental material),
but this seems unlikely to have affected the data set substantially
because most of the taxa we detected increased over time, indicat-
ing that they were growing and therefore not inhibited by strep-
tomycin.

Conclusions. Our study reveals an abundance of TM7 and
Deinococcus-Thermus, bacterial phyla that were not previously
considered common plant-associated microorganisms. These un-
derstudied taxa deserve more attention to determine their role in
plant biology as well as in the diverse environments they frequent.

Early
Mid

Pioneer
Late

Climax

Generalist

Actinobacteria

Bacteroidetes

Chloroflexi

Deinococcus-Thermus

Euryarchaeota

Firmicutes

Proteobacteria

TM7

Unidentified Bacteria

FIG 8 Association network of prevalent taxa (top 20% most abundant), color coded by their successional group. OTUs are nodes, and node size is relative to
its number of sequences, with larger shapes indicating more-abundant OTUs. Node shape indicates the phylum-level affiliation of the OTU. Edges (lines) are
significant associations assessed by local similarity analysis (P � 0.001, q � 0.05). Light-gray edges are time-lagged associations, while dark edges are unilateral
associations (see the supplemental results in Text S1 in the supplemental material). The distance between two OTUs (length of the edge) was optimized to
distinguish associations between successional groups.
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The apple flowers in this study had a consistent microbiome com-
prised of prevalent taxa that form successional groups that appear
during a flower’s life span. We did not detect an influence of strep-
tomycin on flower microbial community structure or dynamics.
Studies of interactions among the key taxa of the successional
groups and between these taxa and the apple host will likely reveal
ecological roles that define each successional group.

MATERIALS AND METHODS
The experiment was conducted on six apple trees (Malus domestica culti-
var Gala) at the Madison Agricultural Research Station, University of
Wisconsin—Madison West, from 27 April to 4 May 2010. The trees were
13 years old and were not irrigated. Fire blight has not been observed in
this orchard since its establishment in 1997, and until this experiment,
streptomycin had never been applied. Three trees were selected for spray-
ing with streptomycin, and three trees served as unsprayed controls. To
minimize drift of streptomycin onto the control trees (60), the two groups
were separated by approximately 25 m and three rows of apple trees. One
southwest-facing branch (1 to 2 m from the ground) on each tree was used
for sampling. Samples were collected between 3:30 and 7:00 p.m. CDT.

To ensure that all flowers were phenologically matched, on 28 April,
all early-opened flowers were removed from trees and discarded. On
29 April, the relatively high temperatures (daily high of 24.5°C) induced
the majority of the flowers to open. Unopened flowers were discarded
before collection of a sample of 15 open flowers (including sepals, petals,
stamens, and pistils) (see Fig. 1A and B). On 29 and 30 April, agricultural-
grade streptomycin sulfate (Agri-mycin17; Nufarm Agricultural Prod-
ucts, Burr Ridge, IL) was sprayed onto three trees at a final concentration
of 100 ppm streptomycin according to the manufacturer’s recommenda-
tion (bactericidal dose). The sample from 29 April was collected before
streptomycin was sprayed. Samples of 15 open flowers were collected
from each tree on 1 May and 3 May 2002. In summary, 15 flowers from
each of six trees (three control and three sprayed) were sampled over
five days, for a total of 30 observations. The same six trees were used
throughout the experiment. The flowers were removed from trees with
alcohol-sanitized scissors, transported on ice to the laboratory, and frozen
at �80°C until DNA was extracted using the FastDNA kit (MP Biomedi-
cals, Solon, OH) (see the supplemental methods in Text S1). Prior to DNA
extraction, flowers were massed using an SI-64 balance (Denver Instru-
ment, Bohemia, NY). For each tree, DNA was extracted from a pool of 15
flowers. We were unable to extract a sufficient quantity of microbial DNA
from an individual flower, which necessitated pooling of 15 flowers per
tree per day for the extraction. During the DNA extraction protocol, we
aimed to separate microbial cells from the flower material prior to micro-
bial cell lysis to limit contamination of plant DNA in the sample (see the
supplemental methods in Text S1).

Extracted microbial DNA was subjected to 16S rRNA tag-encoded
amplicon pyrosequencing (Roche 454 FLX with Titanium reagents) using
standard protocols at the Research and Testing Laboratories, Lubbock,
TX (http://www.researchandtesting.com) (see the supplemental methods
in Text S1 in the supplemental material for PCR conditions). Primers 799
forward (anti-chloroplast, 5=AACMGGATTAGATACCCKG3=) (69) and
1115 reverse (“universal,” 5= AGGGTTGCGCTCGTTG 3=) (70) were
chosen because they avoid amplification of chloroplast DNA and because
they previously have been applied successfully in studies of phyllosphere
microbial communities (39). Together, these forward and reverse primers
target both bacterial and archaeal DNA.

The default workflow in QIIME v1.3 was used for sequence process-
ing, quality control, OTU picking, and UniFrac distance calculations (see
the supplemental methods in Text S1 in the supplemental material) (71).
The exception to the default parameters was that a more-stringent win-
dow size of 50, instead of the default window size of 0, was used to filter
sequences. Each sample was rarefied to 1,838 sequences. For visualization,
singletons and unidentified Bacteria OTUs were removed from the origi-

nal PyNAST sequence alignment before a subset tree (FastTree, as de-
scribed above) was built with Interactive Tree Of Life (72).

To estimate diversity conservatively and reduce noise in patterns of
beta diversity, singleton OTUs were removed prior to community analysis
(e.g., see reference 73) (see the supplemental methods in Text S1 in the
supplemental material). Community analyses were performed in the R
environment for statistical computing (74). The community was rarefied
before analyses. Pielou’s evenness, Faith’s phylogenetic diversity (75), and
the number of OTUs (97% sequence identity, richness) were determined
for each sample. For univariate tests for differences in means, we used
Welch’s t test. For univariate tests of differences in means among catego-
ries, we used analysis of variance with post hoc Tukey’s honestly significant
difference (HSD) tests for multiple comparisons. All summary statistics
(presented as box plots) were calculated across all six trees at each time
point. The sprayed and control trees were analyzed together because we
detected no differences across these groups (see Results).

The R vegan package v2.10 for community ecology (76) was used for
multivariate, permutation-based hypothesis tests for differences in struc-
ture centroid and dispersion (beta diversity), assessed by weighted
UniFrac distance (adonis and betadisper functions, Bonferroni-corrected
when applicable). Permuted analysis of variance calculates the mean
structure of all samples within a group and then tests for differences in
these means across groups (25, 77). Permuted analysis of beta dispersion
calculates the distance of each sample to the group centroid (dispersion)
and then tests for differences in these distances across groups (26). The
envfit function (vegan package) was applied to understand the influence
of environmental variables (including time, mean temperature, precipi-
tation, and mean wind speed) on community patterns described by un-
constrained correspondence analysis. All permuted tests were performed
with 999 or 1,000 permutations. Hierarchical clustering of OTUs that had
similar occurrence patterns was performed by using the hclust function
with complete linkage based on Bray-Curtis similarities among standard-
ized occurrences of OTUs (in R) (see the supplemental methods in Text S1
in the supplemental material) (74). Multivariate cutoff level analysis
(MultiCoLA) was performed using permuted Mantel tests (vegan pack-
age) with Pearson’s correlation coefficient between full and reduced da-
tasets (singletons excluded) compared by Bray-Curtis, Sørenson, and
weighted UniFrac (see the supplemental methods in Text S1) (34). We
fitted a log-linear model to describe the relationship between OTU occur-
rence and abundance. To understand the contributions of replacement
and nestedness to the temporal patterns, we followed the protocol of
Baselga (31). For each tree, multivariate beta diversity was partitioned into
components of nestedness and replacement using R scripts available as
supplemental material by Baselga (31). Nestedness was also calculated on
each tree’s community similarity matrix with time points in consecutive
order using the nestednodf function (vegan package), which is based on
overlap and decreasing fill (NODF) (33). Some figures were made with the
aid of ggplot2 package in R (78).

Local similarity analysis (LSA) (35, 36) was used to generate associa-
tion networks of OTUs (97% sequence identity). OTUs were included in
the LSA if they were within the most prevalent 20% (relative abundance);
this prevalence cutoff was informed by the change in slope of the Multi-
CoLA analysis. A network was built individually for each tree and then
also in aggregate, using all six trees as replicates with extended LSA (36).
Each LSA included a lag of up to five time points and 1,000 permutations.
Cytoscape v2.8.2 was used for visualization of nodes and edges and their
attributes (79). Node attributes included OTU identification (ID), the
OTU abundance, successional group affiliation, and taxonomic affilia-
tion. Edge attributes included whether the association was positive (di-
rect) or negative (inverse), whether the association was unilateral (simul-
taneous) or time-delayed, and, if the association was time-delayed, by
how many time points. The igraph package v0.5.5-4 (80) in R was used to
calculate network properties based on the significant OTU associations (P
� 0.001; false-discovery q � 0.05), including clustering coefficient (C),
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mean geodesic distance (also known as the small-world parameter; l),
network diameter, and mean number of edges per node (degree).

Sequences were deposited in MG-RAST and made publicly available
(project ID, 2602 “WisconsinAppleFlowers”; metagenomes, 4507292.3 to
4507312.3 and 4507443.3 to 4507451.3; http://metagenomics.anl.gov
/linkin.cgi?project�2602).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBio.00602-12/-/DCSupplemental.

Text S1, DOCX file, 0.1 MB.
Figure S1, EPS file, 2 MB.
Figure S2, PDF file, 0.1 MB.
Figure S3, JPG file, 0.1 MB.
Figure S4, PDF file, 0.4 MB.
Table S1, DOCX file, 0.1 MB.
Table S2, DOCX file, 0.1 MB.
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