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TABLE 3. Antibiotic production and suppression of alfalfa
damping-off by B. cereus isolates

Strain Zwittermicin A Antibiotic B % of healthyproductiona productionb seedlingsc

PF Eh" isolates
MOR28
DGA34
AS4-12d
SOY130
ALF23
HS1-3
MS1-9
WS22-12
UW85d
VGA598
AS8-13
SM32
VGA19
ALF108
HS23_11d
LUTZ128
ALF94
ARL8
SNY45
SNY44d
BAR78
TG42

P7s Eh- isolates
LN100
SNY73

p7r Eh+ isolates
WS10-15d
ALF133
ALF95
DGA37
ALF9
TNM1SSd
WS8-8d
ALF53
ALF19
LS33-2
ALF52
LS2 12d
WS16-4
MS3-2
VGA577
LUTZ21
AS8-4
ALF167
ALF161
SNY42
BAR177
MOR37
HS24-8
VGA137
LN24
SM43
TNM68
TG38

P7r Eh- isolates
WS4-12
DGA84d
MOR1
BGSC4S2e
DGA94
SM44
ALF83d
VGA562
ALF85d
ALF99d

+
+
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+
+
+
±
+
+
+
+
+
+
+
±
±
+
+
+
+
+
+

+
+
+
+
+
+
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+
+
+
+
+
+
+
+
+
±
+
+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
±

+

+

+
+

70
65
57
56
51
49
49
48
47
47

Continued

TABLE 3-Continued

Strain Zwittermicin A Antibiotic B % of healthy
productiona productionb seedlingsc

ALF115 + - 47
ALF117 - - 46
ALF173 - + 46
MS8-2 - - 45
ALF79 - + 45
ALF154 - + 44
BGSC6E1 - - 43
BGSC4E1 - - 43
ALF144d - - 43
ALF13 - + 43
ALF98 - - 42
ALF109d - - 42
ALF157 - - 41
ALF166 - - 41
HDle + - 41
AS7-4 - - 40
BGSC6A3 - - 40
ATCC 7064 - - 39
T - - 39
LUTZ58 - - 39
ALF10 - + 38
BGSC4I1e - - 38
ATCC 27877 - - 36
VGA118 - - 36
LS2-2 - - 36
HS24-9 - - 36
BGSC6E2 - - 36
BGSC4H1e - - 36
ALF1 - - 34
SNY14 - - 34
BAR145 - - 33
BGSC4J1e - - 32
ATCC 12826 - - 31
LN75 - - 31
BGSC4B1e - - 30
BGSC4C3e - - 27
ALF137 - - 22
BGSC4F1e + - 13
BGSC4G1e - - 11
BGSC4A9e - - 9
TNM243 - + ND
TG126 + - ND

a Zwittermicin A accumulation was determined by HVPE and staining.
b Antibiotic B accumulation was determined by HVPE and staining.
c Disease suppression was measured by determining the percentage of healthy

plants 7 days after coinoculation with a B. cereus or B. thuringiensis culture and
Phytophthora medicaginis. Fifteen plants were used for each treatment in seven
separate experiments; thus, the total number of plants used for each treatment
was 105. Treatment with Phytophthora medicaginis only and no inoculation
resulted in 0 and 100% healthy plants, respectively. We calculated the standard
errors based on the least squared mean to compensate for significant block
effects. The standard errors based on the least squared mean were 7% for all
isolates included in all seven experiments and 8% for isolates WS8-8, LS2-12,
BAR78, and ATCC 12826. ND, not determined.

d Isolate that was selected nonrandomly.
e B. thuringiensis strain obtained from a stock collection.

the 34 isolates obtained from roots and soil, 4 produced zwitter-
micin A, and 8 produced antibiotic B (Table 3). Three B.
thuringiensis strains obtained from stock collections produced
zwittermicin A (Table 3). These results showed that neither the
P7S phenotype nor the Eh+ phenotype could be used to
identify all zwittermicin A producers, but that either test could
be used to identify antibiotic-producing B. cereus isolates.
We determined whether the compounds identified as zwit-

termicin A by HVPE were identical to authentic zwittermicin
A by examining putative zwittermicin A obtained from certain
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FIG. 1. Disease suppression by isolates grouped on the basis of
their zwittermicin A and antibiotic B production profiles. The mean

percentages of healthy alfalfa plants are shown for 39 isolates that
produced both zwittermicin A and antibiotic B, 14 isolates that
produced only zwittermicin A, 7 isolates that produced only antibiotic
B, and 38 isolates that accumulated neither antibiotic. Bars labeled
with the same letter do not differ significantly at P < 0.05 as

determined by analysis of variance.

strains by 'H-NMR and mass spectrometry. Putative zwitter-
micin A was purified from isolates HD1, ARL8, SNY44,
LS2-12, DGA37, VGA577, LN100, HS23-11, and AS4-12 and
subjected to 'H-NMR analysis. The 1H-NMR spectra of all
nine of these compounds exhibited the distinguishing charac-
teristics of the authentic zwittermicin A spectrum (28). The
putative zwittermicin A samples purified from the first seven of
these isolates were examined by mass spectrometry, and each
had a mass of 396, which is identical to the mass of authentic
zwittermicin A (28).

Correlation of disease suppression with production of pu-
tative zwittermicin A and antibiotic B by B. cereus isolates. We
tested 99 isolates for their ability to suppress damping-off
disease of alfalfa seedlings caused by Phytophthora medicaginis.
We grouped these isolates on the basis of their zwittermicin A
and antibiotic B production profiles, and the biological control
activities of the groups were compared (Fig. 1). The isolates
that produced both zwittermicin A and antibiotic B were more

disease suppressive than the other isolates (P < 0.05, as

determined by analysis of variance). The isolates that produced
either zwittermicin A or antibiotic B, but not both, were more
disease suppressive than the isolates that produced neither (P
< 0.05, as determined by analysis of variance). The data in Fig.
1 reflect the results of seven separate experiments that were

pooled. The level of homogeneity in these experiments was
sufficient to warrant combining the experimental data for
analysis. Whether the data were considered data from seven

separate experiments or were combined, the isolates that
produced both zwittermicin A and antibiotic B always exhib-
ited the best disease suppression, and the isolates that pro-
duced neither of these antibiotics always exhibited the poorest
disease suppression. The disease suppressiveness ranks of the
two groups of isolates that produced only one of the antibiotics
were not the same in all seven experiments. The values for all
99 isolates tested are shown in Table 3 to illustrate the range of
levels of disease suppressiveness of the isolates used in the
composite analysis described above. Of the 99 isolates tested,
79 increased the percentage of healthy seedlings compared

TABLE 4. Frequency of P7' and P7r Eh+ isolates obtained
from soils and plant roots

No. of PT isolates/ No. of P7r Eh+ isolates/
total no. testeda total no. tested

Stock collections 0/18 0/18
Soybean roots 1/85 0/5
Alfalfa roots 3/179 8/179
Lutz soil 1/189 4/96
Snyder-Molino soil 5/96 4/96
Barbour-Lathrop soil 3/217 2/217
Moroceli soil 3/83 3/60
San Matias soil 1/48 2/48
La Vegal soil 1/48 2/48
La VegaS soil 1/143 4/95
Arlington soil 4/637 2/50
Hancock soil 3/297 7/37
Marshfield soil 1/585 8/81
Lancaster soil 0/556 11/95
Madison soil 51/426 8/51
Taos soil 0/334 20/334
Tifton soil 1/139 11/139
Douglas Gully soil 6/112 33/112
Lelystad soil 2/115 3/115

Total 87/4,307 (2.0)b 132/1,876 (7.0)

a The actual numbers of PT isolates may be higher since most isolates that
were not identified as p7S isolates in the initial screening test were not retested.
Most P7S isolates were also Eh+; the only exceptions were LN100 and SNY73.

b The values in parentheses are percentages.

with plants treated with only Phytophthora medicaginis (a =
0.01, as determined by Dunnet's comparison test). None of the
isolates provided significantly greater seedling protection than
previously described strain UW85 (a = 0.01, as determined by
Dunnet's comparison test).

Diversity among zwittermicin A- and antibiotic B-producing
isolates. To determine whether we had isolated strains that
were diverse, or at least distinguishable, we tested the zwitter-
micin A- and antibiotic B-producing isolates to identify phe-
notypic differences that defined a minimum number of distinct
classes of strains. The phenotypes used to distinguish strains
included production of pigments on MES minimal medium,
the rate of growth on MES-Thr medium, sensitivity to phages
P7, OATCC7064, 4)ATCC27877, and 463, plaque morphology,
colony morphology, and resistance to neomycin, tetracycline,
and chloramphenicol. On the basis of phenotypic differences
we distinguished at least five distinct strain classes among the
eight isolates listed in Table 3 that produced antibiotic B but
did not accumulate zwittermicin A. There were at least 10
distinct strain classes among the 13 isolates (excluding previ-
ously isolated B. thuringiensis strains) that produced zwittermi-
cin A but not antibiotic B, and seven distinct P7S strain classes
and 14 distinct P7r strain classes among the 42 isolates that
produced both zwittermicin A and antibiotic B (data not
shown). The phenotypic differences among the strains suggest
that genetically diverse B. cereus strains produce zwittermicin
A and antibiotic B.

DISCUSSION

We found that phenotypically diverse strains of B. cereus and
B. thuringiensis isolated from a variety of soils produce the
novel antibiotic zwittermicin A, which, as we showed previ-
ously, contributes to biological control by B. cereus UW85 (60).
Zwittermicin A-producing strains were found in soils that are
geographically, physically, and biologically diverse (Table 1).

VOL. 60, 1994



APPL. ENVIRON. MICROBIOL.

In this study, isolates that produced zwittermicin A were

generally superior to isolates that did not produce zwittermicin
A or antibiotic B isolates in suppressing the damping-off of
alfalfa seedlings caused by Phytophthora medicaginis (Fig. 1).
Many of the zwittermicin A producers that we identified also
produced antibiotic B, which also contributes to biological
control by UW85 (60). Isolates that produced both zwittermi-
cin A and antibiotic B were generally superior to isolates that
produced one or neither of these antibiotics in suppressing
damping-off (Fig. 1).

Discovery and description of new zwittermicin A-producing
strains were facilitated by development of the phage P7
sensitivity assay and the E. herbicola inhibition assay. Almost
all of the P7s or Eh+ isolates that we tested produced
zwittermicin A; therefore, these assays can be used to rapidly
identify new zwittermicin A-producing strains obtained from a

variety of soils. Neither assay identified all of the zwittermicin
A producers, however, and the number of p7s or Eh+ isolates
obtained from a given soil probably provides a low estimate of
the total population of zwittermicin A-producing B. cereus
isolates. If the goal is to find new zwittermicin A-producing
strains, but not necessarily all of them, the accuracy of these
assays is sufficient. Both assays can be performed with many
strains simultaneously and are much less labor intensive than
tests for inhibition of Phytophthora medicaginis, disease sup-
pression on alfalfa seedlings, and chemical detection of anti-
biotics. The phage P7 sensitivity assay and the E. herbicola
inhibition assay each has its advantages. Isolates can be
processed more quickly in the P7 sensitivity assay, which allows
more isolates to be screened. However, a larger proportion of
the zwittermicin A-producing isolates in each soil was identi-
fied with the E. herbicola inhibition assay. The size of the zone
of inhibition in the E. herbicola assay may be correlated with
the amount of antibiotic produced, providing quantitative data
on antibiotic production that the phage assay cannot provide.
The assays which we describe above provide useful methods
for identifying zwittermicin A-producing strains obtained from
any soil, although improvements may lead to assays that
identify a greater proportion of the zwittermicin A-producing
strains in a soil.
We observed striking correlations among the p7S and Eh+

phenotypes, disease suppression, and antibiotic production;
however, interpretations of these correlations must be treated
cautiously given the actual number of strains that have been
examined in each assay. It is likely that most Eh+ isolates
produce zwittermicin A, since all of the Eh+ isolates tested in
our HVPE analysis produced zwittermicin A-like material and
all zwittermicin A-like compounds tested by 'H-NMR and
mass spectrometry were indistinguishable from zwittermicin A.
However, most Eh+ isolates were not examined by 'H-NMR
and mass spectrometry, and it is possible that some Eh+
isolates produce antibiotics other than zwittermicin A or
antibiotic B or that in some cases the zwittermicin A and
antibiotic B identified by HVPE is structurally distinct from
authentic zwittermicin A and antibiotic B. The microbiological
assays provide rapid, indirect, initial screening tests for zwit-
termicin A-producing strains, but antibiotic production should
be verified by chemical methods.
The ability to rapidly identify diverse zwittermicin A- and

antibiotic B-producing B. cereus strains that suppress plant
disease should facilitate the testing of new approaches for
improving biological control. One limitation on the use of
biological control in agriculture has been variability under
different environmental conditions. For example, UW85 con-

sistently suppresses disease in Wisconsin, but it is less effective
in the southern United States (26a). It is possible that zwitter-

micin A- and antibiotic B-producing strains obtained from
southern soils will be more effective than UW85 in disease
suppression in those locations. Similarly, it is possible that
zwittermicin A producers obtained from specific crop species
or cultivars will be more effective in disease suppression on
those crops or cultivars. Moreover, a mixture of genetically
diverse disease-suppressive strains might be more effective
than a single strain. Screening B. cereus strains for either
sensitivity to phage P7 or inhibition of E. herbicola can be used
to identify strains that can be used to test these hypotheses in
the field.
Our data suggest that zwittermicin A producers are found in

many different soils and comprise roughly 9% of the culturable
B. cereus soil population, since 9% of the isolates that we
examined were Eh+ and all of these Eh+ isolates produced
zwittermicin A. This estimate of the total zwittermicin A-pro-
ducing population may be low, since some zwittermicin A
producers were Eh-. The existence of such a high level of
zwittermicin A producers suggests that there may be an
opportunity to manage native populations of B. cereus to
achieve plant disease suppression. It may be possible to
increase the native populations of zwittermicin A-producing
strains in soil and on the roots of plants by cultural practices or
by using specific crop cultivars and thus avoid isolation and
inoculation of individual strains. Extensive research and testing
will be required to determine whether these approaches are
feasible or effective for managing diseases in the field.

It is interesting that one strain that produced authentic
zwittermicin A was a previously described B. thuningiensis
strain, HD1, which is widely used in insect control (11).
Recently, Manker et al. (42) reported that HD1 produces a
molecule that appears to be indistinguishable from zwittermi-
cinA and potentiates the entomocidal activity of B. thuringien-
sis endotoxin.
The genetic diversity of B. thunngiensis strains has been

exploited for control of insects, but genetic diversity has not
been central to the development of strategies for biological
control of plant diseases. Use of the diversity within a group of
bacteria that share a common mechanism of disease suppres-
sion may allow workers to capitalize on existing knowledge
concerning mechanisms, physiology, and growth habits, while
exploiting the differences among strains to face the challenges
of diverse environments.
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